
Link for TASKING
For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

User’s Guide
Version 1



How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Link for TASKING User’s Guide
© COPYRIGHT 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

TASKING is a registered trademark of Altium Limited.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2006 Online only New for Version 1.0 (Release 2006a+)



Contents

Getting Started

1
What Is Link for TASKING? . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Supported TASKING Toolsets . . . . . . . . . . . . . . . . . . . . . . . 1-4
Support for Other Versions . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Using This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Setting Target Preferences . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Target Preference Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Working with Configuration Sets . . . . . . . . . . . . . . . . . . . . 1-13
Setting Build Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16

Link for TASKING Menus . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Start Menu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Tools Menu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20

Option Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22

Link for TASKING Configuration Options . . . . . . . . . . . . 1-24

Known Limitations and Tips . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Build Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Processor-in-the-Loop (PIL) . . . . . . . . . . . . . . . . . . . . . . . . . 1-32

Build Process

2
Build Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

iii



Code Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Build Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Memory Placement Example . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Project-Based Build Process . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Target Project Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Template Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Relocation of Template Projects . . . . . . . . . . . . . . . . . . . . . . 2-5
How the Build Process Modifies the Relocated Template

Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Utility Function Generation: Shared Location . . . . . . . . . . 2-7
Supporting Multiple Shared Utility Function Locations:

Build Subdirectory Name . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Build Process — Directory Structure . . . . . . . . . . . . . . . . 2-10
Command Line Project Information . . . . . . . . . . . . . . . . . . . 2-11

Objects

3
Objects for Link for TASKING . . . . . . . . . . . . . . . . . . . . . . 3-2

Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Using Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Creating an Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Determining the Available Methods for a Class . . . . . . . . . 3-6
Obtaining Help for a Class Method . . . . . . . . . . . . . . . . . . . 3-6
Calling a Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Determining the Available Properties for a Class . . . . . . . . 3-7
Accessing a Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Objects Demo Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

List of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

iv Contents



Methods for Class tasking.edeapi . . . . . . . . . . . . . . . . . . . . 3-8
Methods for Class tasking.edeprojectspace . . . . . . . . . . . . . 3-9
Methods for Class tasking.edeproject . . . . . . . . . . . . . . . . . 3-9
Methods for Class tasking.xviewapi . . . . . . . . . . . . . . . . . . 3-10

Processor-in-the-Loop (PIL) Cosimulation

4
Overview of PIL Cosimulation . . . . . . . . . . . . . . . . . . . . . . 4-2

Why Use Cosimulation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
How Cosimulation Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Creating a PIL Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

The PIL Cosimulation Block . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Building, Running, and Debugging PIL Applications . . 4-10
Building and Downloading PIL Applications . . . . . . . . . . . 4-10
PIL Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Coverage and Profiling Reports . . . . . . . . . . . . . . . . . . . . . . 4-12

Tutorials

5
Tutorial: Using Option Sets . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Tutorial: Creating New Template Projects . . . . . . . . . . . 5-4
Tutorial: Creating a New Configuration . . . . . . . . . . . . . . . 5-6

Tutorial: Configuring an Existing Model for Link for
TASKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

Tutorial: Build Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

v



Index

vi Contents



1

Getting Started

What Is Link for TASKING? (p. 1-2) Introduces Link for TASKING® and
its capabilities.

Supported TASKING Toolsets
(p. 1-4)

TASKING toolsets supported by
Link for TASKING.

Using This Guide (p. 1-6) Suggested path through this
document to get you up and running
quickly with Link for TASKING.

Setting Target Preferences (p. 1-7) Configuring Link for TASKING for
use with specific development tools.

Working with Configuration Sets
(p. 1-13)

A step-by-step example of configuring
a Link for TASKING model for
building with different toolchains.

Link for TASKING Menus (p. 1-18) A quick guide to the functionality
available in the Start and Tools
menus, with links to instructions for
tasks.

Option Sets (p. 1-22) How to use preconfigured option sets
to switch target settings.

Link for TASKING Configuration
Options (p. 1-24)

A quick guide to Link for TASKING
options in the Model Explorer with
links to information on how to use
these settings.

Known Limitations and Tips (p. 1-27) A description of known limitations of
Link for TASKING, with suggestions
for workarounds.



1 Getting Started

What Is Link for TASKING?
Link for TASKING lets you build, test, and verify automatically generated
code using MATLAB®, Simulink®, Real-Time Workshop®, and the TASKING
integrated development environment. Link for TASKING makes it easy
to verify code executing within the TASKING environment using a test
harness model in Simulink. This processor-in-the-loop testing environment
uses code automatically generated from Simulink models by Real-Time
Workshop Embedded Coder. A wide range of DSPs and 8-, 16- and 32-bit
microprocessors and microcontrollers are supported including devices from
Infineon, Renesas, and Freescale. Link for TASKING provides customizable
templates for configuring hardware variants, automating MISRA C code
checking, and controlling the build process.

With Link for TASKING, you can use MATLAB and Simulink to interactively
analyze, profile and debug target-specific code execution behavior within
TASKING. In this way, Link for TASKING automates deployment of the
complete embedded software application and makes it easy for you to assess
possible differences between the model simulation and target code execution
results.

Features include:

• Automated project-based build process

Automatically create and build projects for code generated by Real-Time
Workshop or Real-Time Workshop Embedded Coder.

• Automated download and debugging

Rapidly and effortlessly debug generated code in the CrossView Pro
debugger, using either the instruction set simulator or real hardware.

• Processor-in-the-loop (PIL) cosimulation

Use cosimulation techniques to verify generated code running in an
instruction set simulator or real target environment.

1-2



What Is Link for TASKING?

• Highly customized code generation

Use Link for TASKING with any Real-Time Workshop System Target File
(STF) to generate target-specific and optimized code.

• Highly customized build process

Support for multiple TASKING Toolsets provides a route to a large number
of different target hardware platforms. Further customization is possible
by using custom project templates, giving access to all options supported by
the TASKING Toolset.

• MATLAB API for TASKING EDE (IDE)

Automate complex tasks in the TASKING EDE by writing MATLAB scripts
to communicate with the EDE.

For example, you could

- Automate project creation, including adding source files, include paths,
and preprocessor defines.

- Configure batch building of projects.

- Launch a debugging session.

- Execute CodeWright API Library commands.

• MATLAB API for TASKING CrossView Pro (Debugger)

Automate complex tasks in the TASKING CrossView Pro debugger by
writing MATLAB scripts to communicate with CrossView Pro, or debug and
analyze interactively in a live MATLAB session.

For example, you could

- Automate debugging by executing commands from the powerful
CrossView Pro command language.

- Exchange data between MATLAB and the target running in CrossView
Pro.

- Set breakpoints, step through code, set parameters and retrieve profiling
reports

1-3



1 Getting Started

Supported TASKING Toolsets
Link for TASKING includes at least one reference template project for each
supported toolset. The reference projects were created for specific versions
of each TASKING toolset and were used by The MathWorks for qualification
testing. The supported toolset versions are:

• Infineon TriCore: TASKING VX-Toolset for TriCore v2.3 r1

• Infineon C166: TASKING Tools for C166/ST10 v8.6 r1

• Renesas M16C: TASKING Tools for M16C v3.1 r1 patch 2

• ARM: TASKING C Compiler for ARM v1.1 r1

• Freescale DSP563xx: TASKING Tools for DSP563xx v3.5 r3 patch 2

• 8051: TASKING Tools for 8051 v7.1 r3

The Renesas R8C family is supported by the Renesas M16C TASKING Toolset.

The Freescale DSP566xx Family is supported by the Freescale DSP563xx
Toolset.

Support for Other Versions
Check the Link for TASKING Product Support page for patches and additional
toolchain version information.

For minor release increments it may be sufficient to create new default
template projects. To do this, you must first specify the location of your
TASKING toolset in the Target Preferences (see “Setting Target Preferences”
on page 1-7) then run the tasking_generate_templates command. You must
specify your configuration description string, e.g.:

tasking_generate_templates('C166')

or

tasking_generate_templates('TriCore')

1-4

http://www.mathworks.com/support/product/product.html?product=LT


Supported TASKING Toolsets

Note Make sure you check the Link for TASKING Product Support page for
the latest information about toolchains qualified with the Link for TASKING.
You may be able to obtain patches in order to use other toolsets.

1-5

http://www.mathworks.com/support/product/product.html?product=LT


1 Getting Started

Using This Guide
To get started with Link for TASKING:

1 Follow the instructions in “Setting Target Preferences” on page 1-7.

2 Once you have set target preferences, follow the instructions in “Working
with Configuration Sets” on page 1-13 to see how to set up configurations
using an example model.

3 Try the demos to gain experience using Link for TASKING. Access the
demos in one of these ways:

• Click the link: “Link for TASKING Demos.”

• Select Start > Simulink > Link for TASKING > Demos.

• Enter demo('simulink', 'link for tasking') at the MATLAB
command line.

4 See “Link for TASKING Menus” on page 1-18 for a quick guide to the
functionality available in the menus, with links to more information.

See the following topics to learn about Link for TASKING features:

• Chapter 2, “Build Process” explains the Link for TASKING build process.

• Chapter 3, “Objects” explains how to create and use Link for TASKING
objects.

• Chapter 4, “Processor-in-the-Loop (PIL) Cosimulation” describes how to
use PIL cosimulation.

• Chapter 5, “Tutorials” contains instructions to show you how to create new
configurations and template projects, how to use Link for TASKING with
existing models, and how to use different build actions.

1-6



Setting Target Preferences

Setting Target Preferences
You must configure your target preferences to use Link for TASKING.

1 Select Start > Simulink > Link for TASKING > TASKING Target
Preferences, or enter tasking_edit_prefs.

The TASKING Configuration Selection dialog appears.

2 Select a predefined configuration from the list that matches your target, or
select Create new configuration to create a new configuration, and click
OK. For new configurations, see the tutorial section “Tutorial: Creating
a New Configuration” on page 5-6.

The TASKING Target Preferences Setup dialog appears. Here you can
configure the location of your toolchain executable and other files.

1-7



1 Getting Started

3 Click the plus to expand Configuration Options. Similarly, expand
CrossView_Pro_Configuration and EDE_Configuration, as shown in
the example. This example is set up for the Infineon C166 Simulator
configuration.

4 Replace the string <ENTER_TASKING_PATH> to complete the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable. See
the next section, “Target Preference Fields” on page 1-9, for details on each
field. The following example is set up for the Infineon TriCore Simulator
configuration.

1-8



Setting Target Preferences

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. See
the tutorial example “Working with Configuration Sets” on page 1-13.

5 Click OK to dismiss the TASKING Target Preferences Setup dialog.

The next section explains each target preference field.

Target Preference Fields
Open the Target Preference Setup dialog by selecting
Start > Simulink > Link for TASKING > TASKING Target
Preferences, or enter tasking_edit_prefs.

• Configuration

Select a configuration from the drop-down list. There are preconfigured
configurations for

- C166

- TriCore

- M16C

1-9



1 Getting Started

- ARM

- DSP563xx

- 8051

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. You
can switch between them using this target preference field.

Select a free configuration number to set up a new configuration from
scratch. See “Tutorial: Creating a New Configuration” on page 5-6.

• Configuration_Description

The title of the configuration. Once created, this title is the name that
appears in the TASKING Configuration Description drop-down list in
the Configuration Parameters dialog. Edit this field to change the name
of the configuration. These names are predefined for the preconfigured
configurations. For a new configuration enter a descriptive name (do not
include spaces).

• CrossView_Pro_Executable

Enter the full path to your TASKING CrossView Pro installation to replace
the string <ENTER_TASKING_PATH>. For example, for Configuration_1
for Infineon C166 Simulator:

D:\Applications\TASKING\c166\bin\xfw166.exe

• Initialization

This setting determines what the CrossView Pro Debugger will execute
when it first starts. There are three options.

- Use .st Initialization_File This is the default setting. “.st”
files are in an internal file format used by The MathWorks to provide
initialization options to CrossView Pro during debugger start up. For
example, a .st file may specify a CrossView Pro configuration file (.cfg)
and target type for CrossView Pro to use. Each of the option sets shipped
with Link for TASKING specifies a corresponding .st file. For example,
the c166_sim option set specifies the c166_default.st file, which
includes basic initialization commands for the C166 CrossView Pro
Simulator. See “Option Sets” on page 1-22 for related information. To
customize your CrossView Pro configuration, you should use one of the
.ini initialization options.

1-10



Setting Target Preferences

- Use .ini Initialization_File Use this option if you have a custom
.ini initialization file. The file should be a valid CrossView Pro
initialization file for your custom configuration. Refer to your CrossView
Pro application documentation for details.

- Use CrossView Pro Default .ini File Use this option if you want
to run CrossView Pro Default .ini file when launching the CrossView
Pro Debugger. When launching CrossView Pro you may be prompted to
make configuration selections. Refer to your CrossView Pro application
documentation to find the location of this .ini file, and for details of
CrossView Pro initialization files.

• Initialization_File

Full path of the initialization file corresponding to the Initialization
field.

• DOL_File

The full path to the TASKING EDE DOL file. For example, the
Infineon_C166_Simulator Configuration has the <ENTER_TASKING
PATH>_\etc\c166.dol as the dol file. You need to replace
<ENTER_TASKING_PATH> with your real TASKING installation path.

• EDE_Executable

Enter the full path to your TASKING EDE installation to replace the string
<ENTER_TASKING_PATH>. For example, for Configuration_1 for Infineon
C166 Simulator, enter

D:\Applications\TASKING\c166\bin\ede.exe

• Target_Project_Space

When building models, new projects in the TASKING
EDE will be created. These projects will belong to the
project space defined in this entry. The default setting is
$(DEFAULT_LOCATION)\$(TEMPLATE_NAME)\projspace.psp. The code
generation process will expand the $(DEFAULT_LOCATION) token with
the build directory of the model, and the $(TEMPLATE_NAME) token with
the name of the template application project. It is advisable to keep this
default setting unchanged.

1-11



1 Getting Started

• Template_Application_Project

When building a Simulink model with Link for TASKING, the generated
projects for your application in the TASKING EDE will have the same
project settings as the template application project. This provides a centric
place to manage the project options (e.g., compiler settings, linker settings,
etc.) your Simulink models use during code generation. You can modify the
project settings of the default template projects or create new ones. See
“Link for TASKING Menus” on page 1-18 for information on creating or
opening template projects, and see “Template Projects” on page 2-5.

• Template_Library_Project

The same as the Template_Application_Project field, but this will be
applicable for Library projects.

• Use_State_File

Opens the TASKING EDE in its last saved state. For more information,
refer to your TASKING EDE documentation.

1-12



Working with Configuration Sets

Working with Configuration Sets
Follow the steps in this example to see where to find and change Link for
TASKING settings. These steps are described to help you find the settings
you need to get started using the demo models. To use the demos, you need to
specify your target by working with configuration sets. See “Configuration
Sets” in the Simulink documentation for more information.

This example describes how to use Link for TASKING to build a project from
a demo model using two different toolchains. The instructions refer to C166
and TriCore TASKING toolchains; adapt the instructions to your toolchain as
appropriate.

1 Open the model tasking_demo_enginewc.

2 Double-click the Active Configuration Set block to open the Model
Explorer (or select View > Model Explorer).

Under TASKING_demo_enginewc is a list of configuration sets. The currently
selected set is labeled (Active). Inspect the active configuration set.

1-13



1 Getting Started

a The default active configuration set for this model is C166_ert. If you
want to use a different target, right-click the configuration set that
matches your target and select Activate.

b Click Link for TASKING to see the configuration settings, as shown
following.

c The TASKING configuration description drop-down list shows all
available target preference configurations. Once you have set up target
preferences for particular configurations, you can switch between them
here (or in the Target Preferences dialog). Click Edit Configuration
to inspect your current target preferences. Before building, you must
replace the string <ENTER TASKING PATH> to set up the correct paths to
the target preferences CrossView_Pro_Executable, the DOL_File, and
the EDE_Executable. See “Setting Target Preferences” on page 1-7.

Click OK to dismiss the TASKING Target Preferences Setup dialog.

In the Link for TASKING demos, when you activate a configuration (e.g.,
C166_ert), the appropriate Tasking configuration description is
automatically selected (e.g., C166). You may want to select a different

1-14



Working with Configuration Sets

target preference configuration description, for example if you have set
up a custom configuration (e.g., C167_user_hardware). For an example,
see “Tutorial: Creating a New Configuration” on page 5-6.

See “Link for TASKING Configuration Options” on page 1-24 for
information on other Link for TASKING settings in the Configuration
Parameters.

d Click Real-Time Workshop to see the selected system target file
ert.tlc.

Note You can use a configuration set specifying any system target file
with Link for TASKING.

e Click Hardware Implementation to see the C166 settings. If you are
using a different target, make sure the settings match your device.

f Close the Model Explorer.

3 In the model tasking_demo_enginewc, right-click the t_eng_speed
subsystem and select Real-Time Workshop > Build Subsystem. Click
Build in the dialog to continue.

Watch the output in the MATLAB Command Window as code is generated,
your TASKING toolchain EDE is launched and a new project created.

If you have multiple toolchains, you have to set up your target preferences
only once, then it is simple to switch between different configurations. For
example, to switch configurations from C166 to TriCore targets:

1 In the model tasking_demo_enginewc, double-click the Active
Configuration Set block to open the Model Explorer.

2 Right-click TriCore_ert and select Activate. Close the Model Explorer.

3 To rebuild the subsystem with the new settings, right-click the t_eng_speed
subsystem and select Real-Time Workshop > Build Subsystem.

1-15



1 Getting Started

Watch the output in the MATLAB Command Window as code is generated,
the TASKING C166 EDE is closed, the TASKING TriCore EDE is launched,
and the new project created.

You can follow similar steps to specify your target in the demo models. See
the “Link for TASKING Demos.”

To switch between simulator and hardware implementations for the same
target configuration, you can use option sets. See “Option Sets” on page 1-22.

The next section describes using the build action setting in this example.

Setting Build Action
In this example, the project is created but not built in the TASKING EDE. To
see this setting,

1 In the model tasking_demo_enginewc, select
Simulation > Configuration Parameters.

2 Click Link for TASKING to see the Build Configuration parameters.

3 Look at the Build Action drop-down list.

1-16



Working with Configuration Sets

Here you can set what action to take after the Real-Time Workshop build
process completes. You can create application and library projects in the
TASKING EDE and then stop, or you can also choose to build, execute,
or debug.

If you choose to build, execute, or debug, CrossView Pro will be launched.

Note the first time you build this model it will take a few minutes to
compile the required Real-Time Workshop floating point library. This will
not be rebuilt on subsequent builds unless necessary.

For more information on other build actions, see “Tutorial: Build Actions”
on page 5-10.

1-17



1 Getting Started

Link for TASKING Menus
This section describes the menu items, with links to instructions.

• “Start Menu Items” on page 1-18

• “Tools Menu Items” on page 1-20

Start Menu Items
Common tasks are available in the Start menu. Select
Start > Simulink > Link for TASKING to see the following
submenu options.

1-18



Link for TASKING Menus

• TASKING Target Preferences

Opens the TASKING Configuration Selection dialog, and once you have
chosen a configuration to match your target (e.g., TriCore), you can edit
the TASKING Target Preferences Setup dialog. Here you can modify your
TASKING preferences configurations. You can also open this dialog from
the MATLAB prompt by typing TASKING_edit_prefs.

You must set up your target preferences before you can use Link for
TASKING. See “Setting Target Preferences” on page 1-7.

• Select Preconfigured Target Preference Settings

Opens the TASKING Configuration Selection dialog. Choose a configuration
to match your target and click OK, then you can select a preconfigured
option set. Your target preferences are automatically updated according
to the option set you select, for example, specifying either hardware or
simulator settings. See “Option Sets” on page 1-22.

• Launch and Test Communication with TASKING EDE

Opens the TASKING Configuration Selection dialog. Choose a configuration
and click OK, and Link for TASKING tests whether MATLAB can
communicate successfully with the EDE for the selected configuration.
You see messages at the command line to confirm whether communication
is successful.

• Create a New Model (configured for Link for TASKING)

Creates a new untitled Simulink model, with Link for TASKING
configuration set options already added. You can also configure an existing
model by selecting the Simulink model menu item Tools > Link for
TASKING > Add Link for TASKING Configuration to Model.

• View, Modify, and Copy Configuration Sets via Model Explorer

Opens the Model Explorer where you can edit all configuration sets
available for each currently open model.

• Create New Template Projects

The Link for TASKING product ships with preconfigured application and
library template projects for the default configurations in the TASKING
Preferences. You might, however, create your own template projects
(using preconfigured options as a starting point), and use them with any

1-19



1 Getting Started

configuration. See “Tutorial: Creating New Template Projects” on page 5-4
for an example, and “Template Projects” on page 2-5 for more information.

This option opens the TASKING Configuration Selection dialog. Choose
a configuration and click OK, and Link for TASKING launches the
appropriate TASKING EDE and creates new template projects for a specific
TASKING configuration. You are prompted to choose a project directory, a
template name, and an option set. See “Option Sets” on page 1-22 for more
details. app_template_name.pjt and lib_template_name.pjt are created
for the configuration you selected.

• Open Existing Template Projects

Opens the existing application and library template projects in the
TASKING EDE for the selected TASKING configuration. You can
modify these options; however, it is preferable to do this by first creating
new template projects, which avoids overwriting the default template
projects. If you modify the default template projects, you can use the
following function to recreate the defaults: tasking_generate_templates.
You must specify your configuration description string, e.g.:
tasking_generate_templates('C166').

• Demos

Opens the Link for TASKING Demos page in the Help browser.

Tools Menu Items
In a Simulink model, you can access Link for TASKING items in the Tools
menu. Select Tools > Link for TASKING to see the following submenu
items.

• TASKING Target Preferences

As in the Start menu, opens the TASKING Configuration Selection dialog,
and once you have chosen a configuration, you can edit the TASKING
Target Preferences Setup dialog. You must set up your target preferences
before you can use Link for TASKING. See “Setting Target Preferences”
on page 1-7.

• Add Link for TASKING Configuration to Model

Adds Link for TASKING configuration options to the model configuration
parameters.

1-20



Link for TASKING Menus

To see exactly which configuration parameter settings are changed, refer to
tasking_addto_configset.m. Enter edit tasking_addto_configset.

• Remove Link for TASKING Configuration from Model

Removes Link for TASKING configuration options from the model’s
configuration parameters.

• Options

Opens the Configuration Parameters dialog to show Link for TASKING
options. See “Link for TASKING Configuration Options” on page 1-24.

1-21



1 Getting Started

Option Sets
Option sets are preconfigured settings to specify the target configuration
for the TASKING tools. For example, once you have set up your target
preferences for a Tricore configuration, you can use option sets to switch
between using an instruction set simulator configuration, two hardware board
configurations, or a simulator with some MISRA-C rule checking.

You can either

• Use option sets to switch between default target configurations, or

• Use option sets when creating new template projects, to set up an initial
configuration that you can choose to modify later

See “Tutorial: Using Option Sets” on page 5-2 for instructions.

The following preconfigured option sets are available.

“*” indicates the default in the Target Preferences.

• Infineon TriCore:

- * tricore_sim: Default (TC11IB) instruction set simulator configuration.

- tricore_sim_misra: As tricore_sim, but with some example
MISRA-C rule checking enabled. See also the TriCore MISRA-C demo
example, tasking_demo_misra.m, with instructions under Link for
TASKING Demos.

- tricore_sim_1796b: Infineon TriCore 1796b hardware configuration.

- tricore_sim_1766b: Infineon TriCore 1766b hardware configuration.

• Infineon C166:

- * c166_sim: Default (C167) instruction set simulator configuration.

- c167cs_sim: Infineon C167CS instruction set simulator configuration.

- c167cs_hw: As c167cs_sim, but targeting hardware rather than
simulator.

• Renesas M16C

1-22



Option Sets

- * m16c_sim: Default (M30624FGAFP/GP) instruction set simulator
configuration.

- r8ctiny_sim: Renesas R8C Tiny (R5F21104FP) instruction set
simulator configuration

• Freescale DSP563xx:

- * dsp563xx_sim: DSP563xx Family, 16-bit memory model, instruction
set simulator configuration.

- dsp566xx_sim: DSP566xx Family instruction set simulator
configuration.

• ARM:

- * arm_sim: Default (ARMv4T) instruction set simulator configuration.

- arm_sim_big_endian: As arm_sim, but in big endian mode.

• 8051:

- * i8051_sim: Default (8051), large memory model, no language
extensions, floating point, instruction set simulator configuration.

1-23



1 Getting Started

Link for TASKING Configuration Options

Note To add Link for TASKING configuration options to a model, select
the menu item Tools > Link for TASKING > Add Link for TASKING
Configuration to Model.

To see Link for TASKING configuration options, select either

• Simulation > Configuration Parameters in a model

• Tools > Link for TASKING > Options in a model

• View > Model Explorer in a model

• Start > Simulink > Link for TASKING > View, Modify and Copy
Configuration Sets via Model Explorer in MATLAB

Click Link for TASKING to see the following options.

1-24



Link for TASKING Configuration Options

Under Build Configuration

• Build action

Set what action to take after the Real-Time Workshop build process. You
can create application and library projects in the TASKING EDE and then
stop, or you can also choose to build, execute, or debug. See “Tutorial: Build
Actions” on page 5-10 for more details.

• TASKING configuration description

Select target preference configurations here. The names correspond to
the Configuration Description for each configuration in the TASKING
Target Preferences Setup dialog. Click Edit Configuration to open the
TASKING Target Preferences Setup dialog for the currently selected
configuration. See “Working with Configuration Sets” on page 1-13.

• Specify build subdirectory name

Select the check box to specify a subdirectory name and avoid “shared
utility function” code generation errors. Prior to code generation, Link for
TASKING changes to the specified build subdirectory to avoid conflicts
over the “shared utility” location. Clear this check box to use the default
Real-Time Workshop build without using a subdirectory — this may result
in rebuilding shared libraries unnecessarily. See “Shared Libraries” on
page 2-7 and particularly “Supporting Multiple Shared Utility Function
Locations: Build Subdirectory Name” on page 2-8 for details.

• Build subdirectory name

Enter a name for the subdirectory in the edit box.

Under Export Handles

• Export EDE handle to MATLAB base workspace

Select this check box to export the EDE object handle to the workspace.

• EDE handle name

Enter a MATLAB variable name for the exported handle.

• Export CrossView Pro handle to MATLAB base workspace

Select this check box to export the CrossView Pro object handle to the
workspace.

1-25



1 Getting Started

• CrossView Pro handle name

Enter a MATLAB variable name for the exported handle.

See Chapter 3, “Objects” for information on using these object handles.

Under Processor-in-the-Loop (PIL) Verification

• Configure model to build PIL algorithm object code

Select this box to build PIL algorithm code.

• PIL block action

Select one of the following PIL block actions

- Create PIL block, then build and download PIL application

Select this option to automatically build and download the PIL
application after creating the PIL block. This is the default when you
select the option to configure the model for PIL.

- Create PIL block

Choose this to create the PIL block and then stop without building. You
can build manually from the PIL block.

- None

Choose this to avoid creating a PIL block, for instance if you have already
built a PIL block and do not want to repeat the action.

See Chapter 4, “Processor-in-the-Loop (PIL) Cosimulation” for more
information on using PIL settings.

1-26



Known Limitations and Tips

Known Limitations and Tips
The following issues are known limitations with Link for TASKING, with
suggestions for workarounds where possible.

Build Process

EDE is slow, unresponsive or crashes
Tool Suites: All

Problem: Under certain circumstances the TASKING EDE may become slow,
unresponsive, or even terminate with virtual memory problems. This is an
open issue with the TASKING EDE.

Workaround:

• Close the EDE and try building the model again, and/or

• Try deleting the symbol database file, cwright.sbl, which can be found in
the EDE_Executable directory ($TASKINGRootDir\bin)

Signal Processing Blockset Library Build Failures
The following problems have been found with Signal Processing Blockset
(“DSP lib”) library builds:

• With Renesas M16C, building the Signal Processing Blockset library with
floating point support enabled results in the following error:

TASKING program builder v3.1r1 Build 076 SN 00100552
Assembling qrdc_z_rt.src asm16c E219:
["qrdc_z_rt.src" 1692] expression out of range
(0 and FF hexadecimal)wmk:
*** action exited with value 1.

This is a known bug with the Renesas 16C compiler. Workaround: Disable
floating point support in the model.

• With 8051, when trying to build DSP libraries, you may see the following
errors with floating- and fixed-point versions:

1-27



1 Getting Started

TASKING program builder v7.1r3 Build 076 SN 00123456
Compiling g711_enc_a_sat_rt.c
cc51 S533: D:\work_dirs\tasking_bugs\8051_fixed_point_dsplib\
g711_enc_a_sat_rt.c: line 34: assertion failed - please report
wmk: *** action exited with value 2.
wmk: "g711_enc_a_sat_rt.src" removed.

TASKING program builder v7.1r3 Build 076 SN 00123456
Compiling burg_a_c_rt.c
wmk: *** action exited with value -1073741571.
wmk: "burg_a_c_rt.src" removed.

This is a known bug with the 8051 compiler. Workaround: none.

• With ARM, when trying to build DSP libraries, you may see the following
errors with floating- and fixed-point versions:

TASKING program builder v1.1r1 Build 078 SN 00123456
Compiling "..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\dspblks\c\dspendian\is_little_endian_rt.c"
carm S917: internal consistency check failed - please report
wmk: *** action exited with value 1.

TASKING program builder v1.1r1 Build 078 SN 00123456
Compiling "..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\dspblks\c\dspendian\is_little_endian_rt.c"
carm S917: internal consistency check failed - please report
wmk: *** action exited with value 1.

This is a known bug with the ARM compiler. Workaround: none.

Model Reference is not supported
Tool Suites: All

Problem: Model reference is not yet supported by Link for TASKING. An
informative error is provided.

Workaround: None.

1-28



Known Limitations and Tips

Real-Time Workshop “grt.tlc”-based targets are only
supported for 32-bit targets
Tool Suites: Infineon C166, Renesas M16C, 8051, DSP563xx

Real-Time Workshop “grt.tlc”-based targets are not supported for non–32-bit
targets. If you use an unsupported combination you see an error of this form:

Error using ==> RTW.makertw.PCGHook
Error encountered while executing PostCodeGenCommand:
Error using ==> tasking_post_code_gen_hook>i_processBuildArgs
This model requires support for non-finite floating point values
("rt_nonfinite.c").

"rt_nonfinite.c" only compiles on targets with at least a 32-bit
word size.
However, this target has a word size of only: 16 bits.
To avoid this error you can switch to an ERT-based target and
uncheck "non-finite numbers" in the RTW Interface configuration
settings, however you will not be able to use non-finite
floating point values in the model.

Workaround: Use a Real-Time Workshop “ert.tlc”-based target.

Memory Block Freed Twice Error
Occasionally, when the Link for TASKING is creating projects in the
TASKING EDE, the following error appears: Memory block freed twice.
This is a known bug in the TASKING EDE.

To work around the problem, click OK in the error dialog, and the code
generation process will continue as normal.

8051 EDE cannot compile files with long names
If you encounter this problem you will see error messages like the following:

Assembling tasking_fuel_controller_ert_rtw_pil_cstart.src

asm51 E001: tasking_fuel_controller_ert_rtw_pil_cstart.src: line 1:

syntax error

wmk: *** action exited with value 1.

1-29



1 Getting Started

This indicates that the full path of the model or subsystem you are trying to
build is too long. Consider moving the model to a shorter directory name, or
renaming the model/subsystem to use shorter names.

8051 Compiler Bug: Assertion Failure
When building 8051 projects you may see the following error:

TASKING program builder v7.1r3 Build 076 SN 00123456

Compiling compilerassertion.c

cc51 S518: D:\Applications\tasking\8051\v7.1r3\examples\banksw\
compilerassertion.c: line 23: assertion failed - please report

wmk: *** action exited with value 2.

wmk: "compilerassertion.src" removed.

This is a known bug with the 8051 compiler. Workaround: none

8051 8-bit code generation problem for signals with large
dimensions
Problem: Real-Time Workshop defines the "int_T" datatype as an 8-bit integer
datatype on the 8051 architecture. In the generated code, "int_T" is often
used as a loop index variable. For signals with large dimensions (>127), the
required number of iterations of loops in the generated code is correspondingly
large, and this results in overflowing of the loop index variable. This overflow
can lead to infinite loops during execution of the generated code, and results
in timeout errors during PIL cosimulation.

Workaround: On the 8051 platform, do not use signals that require loop index
variables to represent values larger than 127 in the generated code.

ARM GRT Build Failure
With ARM, when building with the grt system target file, you may see the
following error:

TASKING program builder v1.1r1 Build 078 SN 00123456

1-30



Known Limitations and Tips

Compiling "..\..\slprj\grt\_sharedutils\rt_nonfinite.c"
carm S917: internal consistency check failed - please report
wmk: *** action exited with value 1.

This is a known bug with the ARM compiler. Workaround: none.

DSP563xx Toolset Support Limitations
Some limitations should be noted for the DSP563xx Toolset.

• Only 16-bit mode for the DSP563xx Family is supported. As for other 16-bit
targets, Real-Time Workshop “grt.tlc”-based targets are not supported; for
this toolset the "GRT Compatible Call interface" option in the Real-Time
Workshop Interface settings is also not supported. This is due to the
non-standard size of single- and double-precision floating-point datatypes
on this architecture (tmwtypes.h will not compile)

• The DSP5600x Toolset is NOT supported because none of the processors
supported by this toolset have 16-bit memory models.

• PIL is not supported for the DSP563xx Toolset owing to the fact that it is a
word addressable architecture and this is not yet supported by PIL. Only
byte addressable architectures are supported.

• Both 16-bit memory models of the DSP563xx Family produce watch errors
(wrong values displayed) in CrossView Pro owing to a bug in the TASKING
toolset. CrossView Pro does not know that the datatype sizes should be
different according to the selected memory model. Note: this does not affect
the DSP566xx Family.

“Create, Build and Execute Application Project” Build Action
fails
Tool Suites: Renesas M16C

Problem: Executing the application project, rather than debugging (via
“Create, Build and Debug Application Project) does not work correctly,
because the CrossView Pro Simulator does not know the start address when
debugging information is not loaded. The application does not execute.

1-31



1 Getting Started

Workaround: Once CrossView Pro has launched,

1 Stop execution by clicking the Halt button

2 Execute the following command in the CrossView Pro command window to
determine the application entry point stored at location 0xfffffc

*((unsigned long *)0xfffffc)/x

Example output for this command is:

0xfffffc = 0x000d0000

3 Change the execution position to the application entry point by executing
the "gi" command, using the output of the previous command. For
example, 0xd0000 gi

4 Resume execution by clicking the Run/Continue button.

Alternatively, use the “Create, Build and Debug Application Project” build
action.

Processor-in-the-Loop (PIL)

TASKING TriCore 1766B PIL Limitation
The demo "tasking_demo_pil_toplevel_testharness" does not work correctly
for PIL, due to a TASKING bug relating to setting breakpoints. The PIL
application does not download correctly in CrossView Pro and causes a 60
second pause in MATLAB before the following error occurs:

Error using ==> tasking.xviewapi.executeAndWait
Command "s", sequence number 14, timed out after 60 seconds.

Other PIL demos like tasking_demo_pil_library_testharness and
tasking_demo_autotrans do work correctly. However, customers’ PIL models
on this platform may run into the same issue.

1-32



Known Limitations and Tips

8051 link order bug can cause PIL application failure
When building PIL applications for 8051 you may see linker warnings like
the following.

link51 W001: unresolved external symbol
'_?BINARYSEARCH_S16', module t_fuelsys.obj

link51 W001: unresolved external symbol
'_?DotProduct_s32s16', module t_fuelsys.obj
link51 W001: unresolved external symbol
'_?INTERPOLATE_S16_S16_SAT', module t_fuelsys.obj

If this happens an error will be reported by the PIL block during cosimulation.

Workaround: if you encounter this you can contact TASKING for a patch to
make it possible to use the multipass option to rescan multiple libraries.

8051 PIL timeout errors
See limitation and workaround details in “8051 8-bit code generation problem
for signals with large dimensions” on page 1-30.

Support for Buses / Mux Signals at boundary
Problem: Buses / Mux Signals are not supported at the PIL component
boundary

Workaround: None.

Signals with Custom Storage Classes are not supported at the
PIL component boundary
Problem: As title. Workaround: None. However, note that the standard
non-custom storage classes, like ExportedGlobal, are supported.

Continuous sample times not supported
Continuous sample times are not supported by PIL. If you encounter this
you see the following error:

??? Processor-in-the-Loop (PIL) does not support continuous
time. Please uncheck "continuous time" in the RTW Interface

1-33



1 Getting Started

configuration set options or disable PIL.

Workaround: none. You must use discrete sample times.

Real-Time Workshop “grt.tlc”-based targets are not supported
for PIL
Problem: As title.

Workaround: Use a Real-Time Workshop “ert.tlc”-based target.

Enabled / Triggered subsystems are not supported
Problem: As title.

Workaround: None.

Warnings caused by infinite sample times
When some of the PIL algorithm’s inputs and/or outputs have infinite sample
times the following warning may occur when using the corresponding PIL
block:

Warning: Inconsistent sample times.
Sample time of signal ([1.#INF, 0]) driving input port 1
of 'pil_inf_input_tasking/Subsystem' differs from the expected
sample time at this input port ([1, 0]).

These warnings occur because the PIL block uses the discrete sample times
associated with the PIL algorithm code rather than the corresponding infinite
sample times associated with the PIL algorithm model. This warning can be
ignored and no differences between simulation and PIL cosimulation results
are known to occur.

Workaround: Do not use signals with infinite sample times at the PIL
algorithm boundary.

No support for TASKING feature “treat double as float”
You can enable the feature in a TASKING project to treat the double precision
floating point datatype "double" as the single precision floating point datatype

1-34



Known Limitations and Tips

"float". Usually, this means that double precision floating point datatypes are
represented in 4 bytes rather than 8 bytes.

PIL always assumes that the "double" datatype is represented normally. If
you enable the ’treat double as float’ override, PIL will not be able to correctly
transfer "double" datatypes between host and target, and cosimulation errors
will occur. Note that the default templates that ship with Link for TASKING
do not enable the override.

Workarounds:

• Do not use the option to treat “double” as “float”. In this case, double
precision floating point values are represented normally.

• Use the "single" datatype in Simulink rather than "double". In this case,
the option to treat “double” as “float” will have no effect on PIL, because
no "double" datatypes will be used.

TASKING optimization settings may cause incorrect
cosimulation results
Sometimes you may observe differences between simulation and PIL
cosimulation results. The code compiled and running in the TASKING
environment may not always behave correctly, even when the generated code
is correct. One cause of this, particularly with the TriCore toolset, is the
compiler optimization configuration used to build the generated code.

Workaround: If you see differences between simulation and PIL cosimulation
results, try setting the compiler optimization settings in the template projects
to either No optimization, Debug purpose, or a similar equivalent for your
TASKING toolset. Then, build the PIL algorithm and PIL application again
and try repeating the cosimulation.

To create new template projects and modify their project settings see “Tutorial:
Creating New Template Projects” on page 5-4.

1-35



1 Getting Started

1-36



2

Build Process

Build Process Overview (p. 2-2) Understanding the build process.

Project-Based Build Process (p. 2-4) About projects and target project
space.

Template Projects (p. 2-5) About template projects.

Shared Libraries (p. 2-7) About shared libraries and build
subdirectory names.

Build Process — Directory Structure
(p. 2-10)

Explains the build process directory
structure and how to locate files.



2 Build Process

Build Process Overview
The Link for TASKING provides a customized build process that is designed
to work with the highly customized code generation process provided by
Real-Time Workshop.

To explain the separation of duties between Real-Time Workshop and Link
for TASKING, the following sections elaborate on the terms “code generation
process” and “build process”.

Code Generation Process
The code generation process is performed by the Real-Time Workshop family
of products and is the process of translating a Simulink model into C code.

Customized code generation, perhaps to create target-specific device drivers
or target-optimized code, is often a key requirement for users wishing to
generate code from Simulink models.

Real-Time Workshop and Real-Time Workshop Embedded Coder provide a
variety of mechanisms for users to customize the code generation process. For
example, the standard code generation process, using the regular system
target files (like grt.tlc and ert.tlc) can be customized by making changes
to the model’s configuration parameters. Alternatively, for an even greater
level of customization, including the ability to define custom Real-Time
Workshop options, you can use a user created system target file.

The demos that come with Link for TASKING make use of the first type of
customization described above. That is, the standard code generation process
has been tailored for the appropriate target platform simply by changing
the model’s configuration parameters.

Of course, for greater flexibility, you should use a custom system target
file. For further details on customizing the code generation process, see
the Real-Time Workshop and Real-Time Workshop Embedded Coder
documentation.

2-2



Build Process Overview

Build Process
The build process is performed by Link for TASKING and is the process of
taking the C code produced by the code generation process and building
(assembling, compiling, and linking) it for the target platform.

A customized build process, perhaps to use optimized compiler and linker
settings, or perhaps to produce a MISRA compliance report, is often a key
requirement for users wishing to build code produced from Simulink models.

Link for TASKING provides access to the full build process customization
capabilities of the TASKING tools by allowing the user to set up the exact
required configuration in TASKING. Link for TASKING then uses this
configuration as a template for the build process.

Memory Placement Example
As an example, to consolidate the descriptions above, consider the common
task of placing program data into a particular area of memory on a target
platform.

Usually, this is achieved by using compiler-specific notations (like #pragmas)
to define special “memory sections” and to assign data definitions to those
sections. Additionally, a linker command file defines the different available
“memory regions” on the target, and where in these regions the different
memory sections should be located.

Splitting this task between the processes of code generation and building
could be done as follows:

1 Customized code generation defines memory sections and assigns data.

2 Customized build process defines memory regions and assigns memory
sections.

2-3



2 Build Process

Project-Based Build Process
The Link for TASKING build process automatically creates TASKING EDE
projects representing the application and libraries to be built.

A Real-Time Workshop application usually consists of some application code
that makes references to modules that are part of libraries like the Real-Time
Workshop library. Another common library is the Signal Processing Blockset
library, used with the Signal Processing Blockset.

Link for TASKING creates separate projects for the main application code
and each required library. The required libraries are included in the main
application projects as subprojects.

Although the build process is project-based, underlying the projects are
“makefiles” that can be used independently of the EDE. For an example of
how to obtain the appropriate make command, see the demo instructions in
tasking_demo_objects.m .

Target Project Space
Link for TASKING places projects in a project space known as the
target project space. The location of the target project space is controlled
by the Target_Project_Space setting in the Target Preferences, and
usually depends on the name of the template application project (see
$(TEMPLATE_NAME) token) that triggered the build process, as well
as the current directory at the time the build process is invoked (see
$(DEFAULT_LOCATION) token).

2-4



Template Projects

Template Projects
Template projects are regular TASKING EDE projects that are used by Link
for TASKING to allow customization of the build process. Template projects
are tied to particular TASKING Configurations as set up in the Target
Preferences.

There are two types of template projects: application, and library template
projects.

The application template project is used as the template for application
projects and the library template project is used as the template for library
projects.

Relocation of Template Projects
During the build process, the template project is copied to a target project
location, and is then populated with the information relating to how to build
the generated code.

Therefore, the project options of the template project become the project
options of the target project, and hence the build process is customized
according to the template project.

On subsequent build processes, Link for TASKING determines whether
the template project has been updated since it was last copied to the target
project location. If it has, then the target project is updated with a new copy
of the template project. Otherwise, the target project is not updated from
the template project.

Note Project options should be updated in the template project and not in
the target project.

How the Build Process Modifies the Relocated
Template Project
The Link for TASKING build process determines if any changes (preprocessor
defines, include paths and source files) to the target project are required to

2-5



2 Build Process

build the code associated with a particular model, and will update the target
project only if required. Thus, unnecessary project rebuilding is avoided.

Any source files and include paths in the template project will always be
maintained in the target project. This is useful for keeping startup code
that is automatically generated by the EDE, and also the include path to
the compiler’s standard header files.

Preprocessor defines in the template project are not maintained in the target
project and will be overwritten with preprocessor defines associated with
the model during the build process.

2-6



Shared Libraries

Shared Libraries
Link for TASKING models that share the same target project space share
required libraries such as the Real-Time Workshop library. This means that a
library is only built the first time a model that requires it is built.

The advantages of this shared library approach are

• No unnecessary per-model building of libraries; models with similar library
requirements (e.g., integer code only) can share libraries.

• Libraries are built with the project options specified in the corresponding
template project.

• Multiple sets of libraries, each with custom model and/or project options,
can coexist.

Utility Function Generation: Shared Location
The above shared library approach uses the Real-Time Workshop “Utility
Function Generation” feature.

By setting utility function generation to use a shared location, rather than the
model-specific default, you can ensure that the library projects created have
no dependence on model-specific generated code. This feature is the key to
allowing library projects to be shared between models.

As an example, consider the generated header file, rtwtypes.h, that contains
the set of Real-Time Workshop data types available for compiling code
modules, including any libraries.

With the utility function generation set to the default, individual rtwtypes.h
files are generated into each code generation directory. Therefore, there would
be multiple definitions of rtwtypes.h for a library shared between these
models. The problem is, how can one of these rtwtypes.h files be chosen
to build the library?

Setting the utility function generation to use a shared location provides a
solution. In this case, a single rtwtypes.h file is generated into a directory
shared between a set of models. This single file can be used to build the
library without any dependence on the model-specific generated code.

2-7



2 Build Process

Supporting Multiple Shared Utility Function Locations:
Build Subdirectory Name
The approach outlined above works well for a single set of models that have
the same shared utility requirements.

However, what happens if you have two sets of models, each set with different
shared utility requirements?

Normally, the Real-Time Workshop code generation process uses the current
working directory as the location for generated files. In this location, it
supports only a single shared utilities directory for each system target file.
Therefore, it is possible for conflicts over the contents of the shared utility
directory to occur.

For example, this would occur if the Hardware Implementation settings were
different for two models using the same system target file. If the standard
grt.tlc or ert.tlc code generation process is customized by changing
configuration set parameters, this is a highly likely situation.

Another common example of this conflict, for two models sharing the
same system target file, would be if one model was configured to support
floating-point numbers and the other was configured to support integer code
only.

To work around this problem, Link for TASKING provides the “Specify Build
Subdirectory Name” and “Build Subdirectory Name” settings.

During a Link for TASKING build, if the Specify Build Subdirectory Name
check box is enabled then the name specified in the Build Subdirectory
Name setting is used as the name of a directory to change to from the current
working directory location. If this directory does not exist, it is created
automatically.

Therefore, specifying the same build subdirectory name for a similar set
of models allows them to generate code into their own working directory,
avoiding conflict with other models, while still allowing a shared utilities
directory.

At the end of the build process, the original working directory is restored.

2-8



Shared Libraries

This feature of Link for TASKING removes the need for the user to manually
manage changing directories to avoid shared utility directory conflicts.

See the demo models for examples of using this setting: Link for TASKING
Demos.

2-9



2 Build Process

Build Process — Directory Structure
The following table shows the typical directories that are created, relative
to the current working directory, during the Real-Time Workshop code
generation process and Link for TASKING build process. Library files are
specific to library builds.

Note If the Link for TASKING Build Subdirectory option is being used, then
the directories in the table are relative to the build subdirectory.

Directory Contents

$(TEMPLATE_NAME)\pjt_$(CODEGEN) Main application project:
$(CODEGEN).pjt and associated files
(only for application builds).

$(TEMPLATE_NAME)\pjt_exp_-
$(CODEGEN)

Main library project:
exp_$(CODEGEN).pjt and associated
files (only for library builds).

$(TEMPLATE_NAME)\pjt_rtwlib
(if required)

Real-Time Workshop library project:
rtwlib.pjt and associated files.

$(TEMPLATE_NAME)\pjt_rtwshared
(if required)

Shared utilities library project:
rtwshared.pjt and associated files.

Key

$(CODEGEN) Real-Time Workshop code generation
directory name

$(TEMPLATE_NAME) Token expanded from the name of
the template application project in
the target preferences. If the project
name is prefixed with “user_” this is
removed. $(CONFIG_DESC) is a valid
alternative, which expands to the
name of the TASKING configuration
decription.

2-10



Build Process — Directory Structure

See the next section, “Command Line Project Information” on page 2-11, for
details about finding file names, paths and other build information.

Command Line Project Information
When you build an application you can see information containing links at
the MATLAB command line. You can use these links to get further details
such as paths to projects, preprocessor defines, include paths, added files
and their locations.

An example output is shown below.

### Building the PIL Application...
### Updating EDE projects according to BuildInfo object.
Please wait...
Creating project: t_shift_alg_ert_rtw_pil.pjt
Updating preprocessor defines in project:
t_shift_alg_ert_rtw_pil.pjt
Updating include paths in project:
t_shift_alg_ert_rtw_pil.pjt
Adding source files to project:
t_shift_alg_ert_rtw_pil.pjt

You can click the hyperlinks within these messages to get more information.
The build messages are more readable with this information hidden, and the
links provide access when you require more details.

Click the project file name (e.g., t_shift_alg_ert_rtw_pil.pjt) to see the
full path to the project being built, like the following example.

Project path: D:\MATLAB\\work\tricore_fp\tricore_sim\
pjt_t_shift_alg_ert_rtw_pil\t_shift_alg_ert_rtw_pil.pjt

Click preprocessor defines to see a list of preprocessor defines like the
following.

t_shift_alg_ert_rtw_pil.pjt preprocessor defines:

ADD_MDL_NAME_TO_GLOBALS=1
INTEGER_CODE=0

2-11



2 Build Process

MAT_FILE=0
MODEL=t_shift_alg
MT=0
MULTI_INSTANCE_CODE=0
NCSTATES=0
NUMST=1
ONESTEPFCN=1
TERMFCN=1
TID01EQ=0

Click include paths to see a list of include paths like the following.

t_shift_alg_ert_rtw_pil.pjt include paths:

$(PRODDIR)\include
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw
D:\MATLAB\work\tricore_fp
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\taskingdemos
D:\MATLAB\matlab\extern\include
D:\MATLAB\matlab\simulink\include
D:\MATLAB\matlab\rtw\c\src
D:\MATLAB\matlab\rtw\c\libsrc
D:\MATLAB\matlab\rtw\c\ert
D:\MATLAB\work\tricore_fp\slprj\ert\_sharedutils
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\tasking\pil
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil

Click source files to see a list of files added and their full paths.

t_shift_alg_ert_rtw_pil.pjt added files:

D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_common.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.c
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\

2-12



Build Process — Directory Structure

tasking_pil_main.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface_data.h
D:\MATLAB\work\tricore_fp\tricore_sim\
pjt_exp_t_shift_alg_ert_rtw\exp_t_shift_alg_ert_rtw.pjt
D:\MATLAB\work\tricore_fp\tricore_sim\pjt_rtwlib\rtwlib.pjt

2-13



2 Build Process

2-14



3

Objects

Objects for Link for TASKING
(p. 3-2)

Introduction and definitions.

Classes (p. 3-3) Classes provided with Link for
TASKING.

Using Objects (p. 3-4) How to create objects and find
methods and properties.

List of Methods (p. 3-8) Tables showing the methods
available for Link for TASKING
objects.



3 Objects

Objects for Link for TASKING
Link for TASKING uses object-oriented programming techniques and requires
a basic knowledge of some object-oriented terminology. Some fundamental
terms are described below.

• Object — Something you can operate on. An object is an instance of a class,
created by calling the class constructor.

• Class — A class defines the properties and methods common to all objects
of the class.

• Constructor — A function that creates an object, based on the class
definition, and initializes it.

• Method — An operation on an object, defined as part of the class definition.

• Property — Part of an object, treated as a variable at times, that is defined
as part of the class definition.

• Handle — A mechanism to access any object that Link for TASKING
creates. Used in this guide to refer to the object. Often the handle is the
name you assign when you create the object.

The following sections describe how to use and get help for Link for
TASKING objects. See “Objects Demo Example” on page 3-7 for an example
demonstrating some basic capabilities of Link for TASKING objects.

3-2



Classes

Classes
The following table shows the different classes that are provided with Link
for TASKING.

Class Description

tasking.edeapi Represents the TASKING EDE.

tasking.edeprojectspace Represents a project space in the
TASKING EDE.

tasking.edeproject Represents a project in the
TASKING EDE.

tasking.xviewapi Represents the TASKING
CrossView Pro debugger.

tasking.Tasking_Configuration Property of a tasking.edeapi
class representing TASKING
configuration details.

tasking.EDE_Configuration Property of a
tasking.tasking_Configuration
representing EDE configuration
details.

tasking.CrossView_Pro_Configuration Property of a
tasking.tasking_Configuration
representing CrossView Pro
configuration details.

3-3



3 Objects

Using Objects
The topics in this section are:

1 “Creating an Object” on page 3-4

2 “Determining the Available Methods for a Class” on page 3-6

3 “Obtaining Help for a Class Method” on page 3-6

4 “Calling a Method” on page 3-7

5 “Determining the Available Properties for a Class” on page 3-7

6 “Accessing a Property” on page 3-7

7 “Objects Demo Example” on page 3-7

Creating an Object
To find out how to create an object of a particular class you can use the
tasking_help function to find help for the constructor. At the MATLAB
command prompt, enter

tasking_help <classname>.<constructorname>

For example, for the tasking.edeapi class, enter

tasking_help tasking.edeapi.edeapi

Or, for the tasking.edeprojectspace class, enter

tasking_help tasking.edeprojectspace.edeprojectspace

3-4



Using Objects

Follow these steps to create example objects.

1 To create a tasking.edeapi object, you call the constructor as follows:

Ede = tasking.edeapi

The name on the left side of the “=” could be any valid MATLAB identifier
and is the handle to the object.

You must choose a configuration, then communication is tested with the
TASKING EDE. At the command line you see the configuration target
preferences.

2 To create a tasking.edeprojectspace object, you call the constructor as
follows

tasking.edeprojectspace(projspace, edeapi)

Where projspace is the absolute path of the TASKING Project Space this
object will relate to, and edeapi is a tasking.edeapi object, as shown in
the following example.

ps = tasking.edeprojectspace('D:\MATLAB\work\
myprojspace.psp', Ede)

3 To create a tasking.edeproject object, you call the constructor as follows

tasking.edeproject(proj, edeprojspace)

Where proj is the absolute path of the TASKING Project this object will
relate to, and edeapiprojspace is a tasking.edeprojectspace object,
as shown in the following example.

proj = tasking.edeproject('D:\MATLAB\work\myproj.pjt', ps)

4 To create a tasking.xviewapi object, you call the constructor as follows

xv = tasking.xviewapi

You must choose a configuration, then communication is tested with
CrossView Pro. At the command line you see the configuration target
preferences.

3-5



3 Objects

Determining the Available Methods for a Class
Once you have created an object, you can find the available methods by
running the “methods” function.

1 For example, to find the methods available on the tasking.edeapi object
created above (in “Creating an Object” on page 3-4), enter methods(Ede).

2 To find the methods available on the tasking.edeprojectspace object
created above, enter methods(ps)

3 To find the methods available on the tasking.edeproject object created
above, enter methods(proj)

4 To find the methods available on the tasking.xviewapi object created
above, enter methods(xv)

To see the methods available, refer to the tables in “List of Methods” on page
3-8.

Obtaining Help for a Class Method
To get help for a class method, you can use the tasking_help function.

For example, to find out more about the getProject method of the
tasking.edeapi class, you could enter the following command:

tasking_help tasking.edeapi.getProject

MATLAB returns the following output:

GETPROJECT - get the active Project in the EDE
project = getProject
project: edeproject object representing the active Project
in the EDE

project will be empty if there is no open project

To see the methods available, refer to the tables in “List of Methods” on page
3-8.

3-6



Using Objects

Calling a Method
Once you know the details of a class method, you can call it using dot (.)
notation.

For example, to get a tasking.edeproject object representing the active
project, run the following command:

project = Ede.getProject

Determining the Available Properties for a Class
Once you have created an object, you can find the available properties by
running the get function.

For example, to find the properties available on the tasking.edeapi object
created above, enter

get(Ede)

Accessing a Property
You can access a property of a class using dot (.) notation.

For example, to get the “configuration” property of the tasking.edeapi object
created above, enter:

config = Ede.configuration
tasking.Tasking_Configuration (handle)

Configuration_Description: 'C166'
EDE_Configuration: [1x1 tasking.EDE_Configuration]

CrossView_Pro_Configuration: [1x1 tasking.CrossView_Pro_
Configuration]

Objects Demo Example
For hands-on experience you can work through the demo example,
tasking_demo_objects.m, found under Link for TASKING Demos.

This example provides step-by-step instructions for using Link for TASKING
objects to communicate with the TASKING EDE and CrossView Pro debugger
from the MATLAB command line. This illustrates using objects during the
process of building and debugging projects.

3-7



3 Objects

List of Methods
See the following tables for lists of available methods:

• “Methods for Class tasking.edeapi” on page 3-8

• “Methods for Class tasking.edeprojectspace” on page 3-9

• “Methods for Class tasking.edeproject” on page 3-9

• “Methods for Class tasking.xviewapi” on page 3-10

The public methods are shown in the tables (methods beginning with “p” or
“p_” are private methods and should not be used).

Methods for Class tasking.edeapi
Methods for class tasking.edeapi

closeIDE getOptionSetNames

disp getProject

display getProjectSpace

edeapi getTargetProject

exec getToolchainInfo

execApiMacro newProject

execRetNumeric newProjectSpace

execRetString newProjectTemplates

getCreatedEDEProcess newProjectTemplatesViaUI

getOptionSet newTempProjectSpaceIfNoneOpen

open processTemplateProject

openProjectTemplates validateToolchainDirectory

pwd

3-8



List of Methods

Methods for Class tasking.edeprojectspace
Methods for class tasking.edeprojectspace

add deleteParentDir

getEDE isopen

checkValid disp

getOriginalPath new

checkValidProject display

getPath open

close edeprojectspace

isequal remove

Methods for Class tasking.edeproject
Methods for class tasking.edeproject

add getEDE isopen

build getFiles new

checkValid getHyperlink open

close getIncludes rebuild

debug getMakeCmd remove

disp getOriginalPath run

display getPath setCDefines

edeproject getProjectSpace setIncludes

getBuildOutput getTarget setPerformToolchainNameCheck

getCDefines hasFile

getDir isequal

3-9



3 Objects

Methods for Class tasking.xviewapi
Methods for class tasking.xviewapi

addBreakpointCallback getEventReporting

getFunctionConfiguration debug

disp halt

removeBreakpointCallbacks display

isRunning setEventReporting

downloadAndRun execute

xviewapi executeAndWait

getCommandResponse

3-10



4

Processor-in-the-Loop (PIL)
Cosimulation

Overview of PIL Cosimulation
(p. 4-2)

Defining processor-in-the-loop (PIL)
Cosimulation.

Creating a PIL Block (p. 4-5) How to create a PIL block.

The PIL Cosimulation Block (p. 4-7) Describing the Simulink block
interface to PIL.

Building, Running, and Debugging
PIL Applications (p. 4-10)

How to use the PIL block to build,
download, cosimulate and debug PIL
applications.



4 Processor-in-the-Loop (PIL) Cosimulation

Overview of PIL Cosimulation
The Link for TASKING supports processor-in-the-loop (PIL) cosimulation,
a technique that is designed to help you evaluate how well a candidate
algorithm (e.g., a control system) operates on the actual target processor
selected for the application.

During the Real-Time Workshop Embedded Coder code generation process, a
PIL block can be created by Link for TASKING from one of several Simulink
components including a model, a subsystem in a model, or subsystem in a
library. You then place the generated PIL block inside a Simulink model
that serves as the test harness, and run tests to evaluate the target-specific
code execution behavior.

Why Use Cosimulation?
PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In
classic closed-loop simulation, Simulink and Stateflow® model such a system
as two subsystems and the signals transmitted between them, as shown in
this block diagram.

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design
progresses, you can use Simulink external mode with standard Real-Time

4-2



Overview of PIL Cosimulation

Workshop targets (such as GRT or ERT) to help you model the control system
separately from the plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware (e.g., limited memory
resources, or behavior of target-specific optimized code). When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. Once these
adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term “cosimulation” reflects a
division of labor in which Simulink models the plant, while code generated
from the controller subsystem runs on the actual target hardware. In a PIL
cosimulation, the target processor participates fully in the simulation loop —
hence the term “processor-in-the-loop.”

Definitions
PIL Algorithm

This is the algorithmic code (e.g., the control algorithm) to be tested during
the PIL cosimulation. The PIL algorithm resides in compiled object form to
allow verification at the object level.

PIL Application

This is the executable application to be run on the target platform. The PIL
application is created by linking the PIL algorithm object code with some
wrapper code (or “test harness”) that provides an execution framework that
interfaces to the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function is available to the PIL application. The PIL application uses
memcpy to facilitate data exchange between Simulink and the cosimulation
target. NOTE: Whether the PIL algorithm code under test uses string.h
is independent of the use of string.h by the wrapper code, and is entirely
dependent on the implementation of the algorithm in the generated code.

4-3



4 Processor-in-the-Loop (PIL) Cosimulation

How Cosimulation Works
In a PIL cosimulation, Real-Time Workshop generates efficient code for the
PIL algorithm. This code runs (in simulated time) on a target platform. The
plant model remains in Simulink without the use of code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target
platform via the CrossView Pro debugger. When the target platform receives
signals from the plant model, it executes the PIL algorithm for one sample
step. The PIL algorithm returns its output signals (Yout of the algorithm)
computed during this step to Simulink, via the CrossView Pro debugger.
At this point, one sample cycle of the simulation is complete and the plant
model proceeds to the next sample interval. The process repeats and the
simulation progresses.

PIL tests do not run in real time. After each sample period, the tests halts to
ensure that all data has been exchanged between the Simulink test harness
and object code. You can then check functional differences between the model
and generated code. During a PIL test, you can use the TASKING debugger to
set breakpoints, step through the code, and watch variables.

After the test, Link for TASKING returns execution profiling and code
coverage reports to MATLAB for your review. See “Coverage and Profiling
Reports” on page 4-12 for more information.

4-4



Creating a PIL Block

Creating a PIL Block
The PIL settings can be found in the Configuration Parameters dialog under
the Link for TASKING settings.

Under Processor-in-the-Loop (PIL) Verification

• Configure model to build PIL algorithm object code

Select this box to create PIL algorithm object code as part of the Real-Time
Workshop code generation process.

• PIL block action

Select one of the following PIL block actions

- Create PIL block, then build and download PIL application

4-5



4 Processor-in-the-Loop (PIL) Cosimulation

Select this option to automatically build and download the PIL
application after creating the PIL block. This is the default when you
select the option to configure the model for PIL.

- Create PIL block

Choose this to create the PIL block and then stop without building. You
can build manually from the PIL block.

- None

Choose this to avoid creating a PIL block, for instance if you have already
built a PIL block and do not want to repeat the action.

Once you have created and built a PIL block, you can

• copy it into your model to replace the original subsystem (save the original
subsystem in a different model so it can be restored), or

• add it to your model to compare with the original subsystem during
cosimulation.

See “Building, Running, and Debugging PIL Applications” on page 4-10 for
more details.

4-6



The PIL Cosimulation Block

The PIL Cosimulation Block
The PIL cosimulation block is the Simulink block interface to PIL. The
Simulink inputs and outputs of the PIL cosimulation block are configured to
match the input and output specification of the PIL algorithm.

The block is a basic building block that allows you to:

• Select a PIL algorithm

• Choose a PIL configuration

• Build and download a PIL application

• Run a PIL cosimulation

See the next section, “Building, Running, and Debugging PIL Applications”
on page 4-10 for instructions for using the PIL block.

4-7



4 Processor-in-the-Loop (PIL) Cosimulation

The PIL block takes the same shape and signal names as the parent
subsystem, like the following example. This is convenient for copying the PIL
block into the model to replace the original subsystem for cosimulation.

Link for TASKING creates PIL blocks with both the "Simulink system path"
and "Configuration" properties automatically configured. These parameters
are described below.

Simulink system path — Allows you to select a PIL algorithm. You specify
the path of a Simulink system (model or subsystem) as the source of the
generated PIL algorithm to use for cosimulation.

Note: The Simulink system path is the full path to the system and “/” must
be escaped to “//”. For example, a subsystem named "fuel/sys" inside a model
named "tasking_demo_fuelsys" would have the escaped system path:

tasking_demo_fuelsys/fuel//sys

Note that the correct system path can be obtained by clicking on the system
and then running the gcb command. In this example,

>> gcb
ans =
tasking_demo_fuelsys/fuel//sys

Configuration — Allows you to specify a PIL configuration to use for building
the PIL application and running the subsequent cosimulation. The available
configurations correspond to the TASKING configuration descriptions in the
Target Preferences.

4-8



The PIL Cosimulation Block

Some guidelines on choosing a valid configuration:

1 The configuration must generate debugging information because Link for
TASKING requires this in order to communicate with the PIL application.

2 The configuration must be compatible with the TASKING configuration
description that was used to build the PIL algorithm. The fact that these
two configurations need not match exactly allows the flexibility for the PIL
algorithm to be compiled as if for a production environment, for example,
without generating debugging information. However, care must be taken to
ensure that the configurations are compatible in terms of linking, otherwise
build errors will occur when building the PIL application. In many cases, it
is appropriate to use exactly the same configuration for building both the
PIL algorithm and PIL application and therefore no errors can ever occur
owing to incompatibilities between configurations.

4-9



4 Processor-in-the-Loop (PIL) Cosimulation

Building, Running, and Debugging PIL Applications
This section includes the following topics:

• “Building and Downloading PIL Applications” on page 4-10

• “PIL Debugging” on page 4-10

• “Coverage and Profiling Reports” on page 4-12

Building and Downloading PIL Applications
Once you have created a PIL block, you must build and download it before
you can use it for cosimulation. You can use the PIL Block Action setting in
the Configuration Parameters to automatically build and download the PIL
application after the PIL block is created. If you choose not to do this, you can
use the PIL block to do this manually. To do this,

1 Double-click the PIL block to open the mask.

2 Click Build. Wait until the Application name in the mask is updated and
you see the ’build complete’ message.

3 Click Download.

4 Wait until the output in the MATLAB command window stops and you see
the ’download complete’ message in the PIL block, then click OK to close
the block mask.

The PIL Application is now ready. To cosimulate with it, you must copy
the PIL block into your model, either to replace the original subsystem
or in addition to it for comparison. Click Start Simulation to run a PIL
cosimulation.

See the Link for TASKING demo models for examples with instructions to
enable you to build and download PIL blocks and use them in cosimulation.

PIL Debugging
Prior to PIL cosimulation you can use the CrossView Pro debugger to set
breakpoints, so that you can step through the code and watch variables during

4-10



Building, Running, and Debugging PIL Applications

cosimulation. To do this, you must set breakpoints in CrossView Pro prior to
starting the cosimulation as follows:

1 Once the build process completes, a minimized CrossView Pro window
should appear on your Windows Start menu. Maximize the CrossView
Pro window.

2 In CrossView Pro, select File > Open Source and choose a source file to
open. A typical choice would be to open the main generated file associated
with the algorithm, eg. model.c.

3 Choose a location in the file to set a breakpoint and click the “breakpoint”
button to the left of the line. A typical location for setting a breakpoint in
the model.c file would be one of the step functions.

Note You can set multiple breakpoints in multiple files if you wish.

4 To add a variable to the watch, double-click the variable, and then click
Add Watch in the Expression Evaluation window. A typical variable to
add to the watch would be either the external inputs or external outputs
structures which usually represent all of the inputs and outputs of the
algorithm.

5 Start the PIL cosimulation in Simulink. When the breakpoint is hit,
Simulink will pause. CrossView Pro will be available for debugging, and
watch variables will be updated. You can step through the code, set more
breakpoints, and analyze data.

6 When you’ve finished debugging, you can continue running by clicking the
“play” button in CrossView Pro. This will allow the PIL cosimulation to
continue. If you left the breakpoint in place then the cosimulation stops
at that point again. To return to uninterrupted cosimulation, remove
breakpoints.

Warning Never remove the PIL synchronization breakpoint (usually
set on the pilaction function). This breakpoint is used to maintain
synchronization between Simulink and CrossView Pro.

4-11



4 Processor-in-the-Loop (PIL) Cosimulation

As an alternative to manual configuration in CrossView Pro, you can obtain a
handle to the tasking.xviewapi object associated with a PIL block by using
the tasking_pil_crossview_handle command as follows:

crossview = tasking_pil_crossview_handle(block)

where block is the full Simulink system path to the PIL block. You can use
gcb to obtain the system path after clicking on the PIL block.

This handle can be used prior to PIL cosimulation to configure breakpoints,
etc., by using the CrossView Pro command language. Note: this handle should
not be used during PIL cosimulation.

Coverage and Profiling Reports
Once you have downloaded the PIL application and run a cosimulation, you
can view reports in MATLAB. The reports available depend on the target
configuration. For example, for C166 Simulator you can view C code coverage,
profiling and cumulative profiling reports. Messages at the command line
detail which reports are available with hyperlinks. An example follows:

PIL reports available from CrossView Pro for block: fuelsys
Coverage ("covinfo"): Yes (pil_coverage_report)
Profiling ("proinfo"): Yes (pil_profiling_report)
Cumulative profiling ("cproinfo"): Yes
(pil_cumulative_profiling_report)

Click the variable name hyperlinks (e.g., pil_coverage_report) to view the
reports, like the following two examples.

pil_coverage_report =

Module: ..\..\fuelsys0_ert_rtw_pil\pil_interface.c 81%
Function: pilInitialize 77%
Function: initUDataProcessing 76%
Function: processUData 100%
Function: checkDataProcessingComplete 100%
Function: pilStep 71%
Function: initYDataProcessing 76%
Function: processYData 100%
Function: pilTerminate 75%

4-12



Building, Running, and Debugging PIL Applications

Module: ..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.c 90%
Function: getNextSymbol 100%
Function: processData 90%
Function: resetLibSymbolState 100%
Function: checkDataProcessing 78%

Module: ..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\targets\tasking\tasking\tasking_pil_main.c 72%
Function: singleshotStep 97%
Function: taskingStep 75%
Function: taskingProcessUData 95%
Function: taskingProcessYData 95%
Function: pilaction 39%
Function: main 80%

Module: ..\..\fuelsys0_ert_rtw\fuelsys0.c 42%
Function: Sens_Failure_Counter 13%
Function: Fueling_Mode 16%
Function: Init_controllogic 100%
Function: controllogic 48%
Function: fuelsys0_step 45%
Function: fuelsys0_initialize 100%
Function: fuelsys0_terminate 100%

Module: MEMCPY_C 100%
Module: MEMSET_C 100%
Module: CPNNW 50%
Module: MUL 0%
Module: ..\..\slprj\ert\_sharedutils\
binarysearch_s16.c 89%
Function: BINARYSEARCH_S16 89%

Module: ..\..\slprj\ert\_sharedutils\
dotproduct_s32s16.c 0%
Function: DotProduct_s32s16 0%

Module: ..\..\slprj\ert\_sharedutils\
interpolate_even_s16_s16_sat.c 0%
Function: INTERPOLATE_EVEN_S16_S16_SAT 0%

Module: ..\..\slprj\ert\_sharedutils\
interpolate_s16_s16_sat.c 56%
Function: INTERPOLATE_S16_S16_SAT 56%

Module: ..\..\slprj\ert\_sharedutils\

4-13



4 Processor-in-the-Loop (PIL) Cosimulation

look2d_s16_s16_s16_sat.c 100%
Function: Look2D_S16_S16_S16_SAT 100%

Module: ..\..\slprj\ert\_sharedutils\
div_s32_sat_floor.c 67%
Function: div_s32_sat_floor 67%

Module: ..\..\slprj\ert\_sharedutils\
fix2fix_s16_s32_sat.c 75%
Function: FIX2FIX_S16_S32_SAT 75%

Module: UDIL 29%
Module: UMOL 24%
Module: fuelsys0_ert_rtw_pil 0%
Module: CSTART 0%
Module: ..\..\fuelsys0_ert_rtw\fuelsys0_data.c 0%

pil_profiling_report =

Total Execution Time: 473348
Cycles %Cycles

Function: pilInitialize 18 0.004%
Function: initUDataProcessing 2828 0.597%
Function: processUData 1616 0.341%
Function: checkDataProcessingComplete 2020 0.427%
Function: pilStep 2626 0.555%
Function: initYDataProcessing 2828 0.597%
Function: processYData 1616 0.341%
Function: pilTerminate 16 0.003%
Function: getNextSymbol 37370 7.895%
Function: processData 61610 13.02%
Function: resetLibSymbolState 2828 0.597%
Function: checkDataProcessing 8080 1.707%
Function: singleshotStep 15150 3.201%
Function: taskingStep 1616 0.341%
Function: taskingProcessUData 9898 2.091%
Function: taskingProcessYData 9898 2.091%
Function: pilaction 5716 1.208%
Function: main 1886 0.398%
Function: Sens_Failure_Counter 3000 0.634%
Function: Fueling_Mode 8800 1.859%
Function: Init_controllogic 62 0.013%
Function: controllogic 17366 3.669%

4-14



Building, Running, and Debugging PIL Applications

Function: fuelsys0_step 66864 14.13%
Function: fuelsys0_initialize 54 0.011%
Function: fuelsys0_terminate 4 0.001%
Function: BINARYSEARCH_S16 41002 8.662%
Function: DotProduct_s32s16 0 0.000%
Function: INTERPOLATE_EVEN_S16_S16_SAT 0 0.000%
Function: INTERPOLATE_S16_S16_SAT 28678 6.059%
Function: Look2D_S16_S16_S16_SAT 32320 6.828%
Function: div_s32_sat_floor 31782 6.714%
Function: FIX2FIX_S16_S32_SAT 4980 1.052%
Module: MEMCPY_C 23230 4.908%
Module: MEMSET_C 536 0.113%
Module: CPNNW 22624 4.780%
Module: MUL 0 0.000%
Module: UDIL 10624 2.244%
Module: UMOL 10292 2.174%
Module: fuelsys0_ert_rtw_pil 0 0.000%
Module: CSTART 0 0.000%
147: switch(tasking_pil_main_action) {

For cumulative profiling, command line messages like the following will
inform you that you must configure CrossView Pro to specify which functions
to collect data for. Select Tools > Cumulative Profiling Setup, then run
the cosimulation again to get the report.

NOTE: Cumulative profiling requires manual setup in
CrossView Pro.
See Tools->Cumulative Profiling Setup
DO NOT add function, pilaction, to the list of functions
to profile.
You must then run the PIL simulation again
to generate the report.

pil_cumulative_profiling_report =

CrossView Cumulative Profiling Report
-------------------------------------
Total Execution Time: 3790326
Function Calls Recursive
Min.Time Max.Time Avg.Time Total Time %Time

4-15



4 Processor-in-the-Loop (PIL) Cosimulation

For information on build messages containing links at the command line, see
“Command Line Project Information” on page 2-11.

4-16



5

Tutorials

Tutorial: Using Option Sets (p. 5-2) How to use option sets to switch
between preconfigured project
settings.

Tutorial: Creating New Template
Projects (p. 5-4)

Steps for creating new template
projects.

Tutorial: Configuring an Existing
Model for Link for TASKING (p. 5-8)

An example showing how to
configure an existing model for Link
for TASKING.

Tutorial: Build Actions (p. 5-10) How to use different build actions
with Link for TASKING.



5 Tutorials

Tutorial: Using Option Sets
Option sets are preconfigured settings to specify the target configuration for
the TASKING tools. You use option sets to apply EDE project settings (e.g.,
compiler and linker settings, hardware or simulator) that you can then modify
if you choose. For example, once you have set up your target preferences for
a Tricore configuration, you can use option sets to switch between using an
instruction set simulator configuration, two hardware board configurations,
or a simulator with some MISRA-C rule checking.

To choose an option set:

1 Select Start > Simulink > Link for TASKING > Select Preconfigured
Target Preference Settings.

The TASKING Configuration Selection dialog appears.

2 Select a target configuration (e.g., C166, TriCore) from the list in the
dialog, and click OK.

The Option Set Selection dialog appears.

3 Select an option set. The list items are specific to the configuration you
selected; the available option sets are listed in “Option Sets” on page 1-22.
Click OK.

Your target preferences are automatically updated according to the option
set you select, and command line messages inform you the following target
preferences have changed:

• EDE_Configuration

Template_Application_Project: Set to default template application
project relating to the option set.

Template_Library_Project: Set to default template library project
relating to the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
relating to the option set.

5-2



Tutorial: Using Option Sets

Now, when you build any model configured for the same target (e.g.,
TriCore), these project settings will be used. To switch to a different option
set, repeat the steps above.

You can also use option sets to set up an initial configuration when creating
new template projects — see “Tutorial: Creating New Template Projects”
on page 5-4.

5-3



5 Tutorials

Tutorial: Creating New Template Projects
In this tutorial, you create new template projects for a target configuration,
and set up options such as simulator or hardware implementation, compiler
and linker settings, MISRA-C rule checking, or any other project options.
Every time you build a model for the selected target configuration, the project
options you have set up in the new template projects will be used.

To create custom application and library template projects:

1 Select Start > Simulink > Link for TASKING > Create New
Template Projects.

2 When prompted to select a configuration, select your target (e.g., TriCore)
and click OK.

Your target preferences for the location of your TASKING installation
must be set up for the target configuration you choose (see “Setting Target
Preferences” on page 1-7). Make sure the fields are filled in for this
configuration (except the Application and Library Template Projects fields,
and CrossView Initialization field, as this will be done automatically in the
steps below). If your target preferences are set up correctly, your TASKING
EDE launches when you click OK.

3 When prompted by dialogs, choose a location for the template projects,
and enter the template name.

4 When prompted, choose an option set. These specify options specific to your
target, such as whether you want to use simulator or hardware. You can
use these to set up an initial configuration to modify later. See “Option
Sets” on page 1-22 for more information and a list of available option sets.

You now have custom template projects for this new configuration. The
EDE project settings associated with the option set are applied to the new
template projects. Your target preferences are automatically updated
according to the option set you select. Messages at the command line
inform you the following target preferences have changed:

• EDE_Configuration

Template_Application_Project: Set to new template application
project configured by the option set.

5-4



Tutorial: Creating New Template Projects

Template_Library_Project: Set to new template library project
configured by the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
configured by the option set.

Note You can always choose a preconfigured option set to return to the
default settings (using the Start menu option Select Preconfigured
Target Preference Settings).

Next, you will modify the compiler settings for these new template projects.

5 To modify the template projects, you need to open them in the TASKING
EDE:

a Select Start > Simulink > Link for TASKING > Open Existing
Template Projects.

b When prompted to select a configuration, select the same target for
which you created new template projects, and click OK.

c The template projects should now be open in the EDE. Right-click the
project in the TASKING EDE, and select Project Options. You can now
modify the project options (compiler settings, linker settings, etc.).

d When done, you can close the template projects in the TASKING EDE.

6 To modify your CrossView Pro configuration you need to specify a .ini file
in the Initialization_File Target Preference field. See Initialization
in the section “Target Preference Fields” on page 1-9.

7 You are now ready to use the configuration. Open any Simulink model
that is configured with Link for TASKING (tasking_demo_fuelsys, for
example).

8 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog opens.

5-5



5 Tutorials

9 Select Link for TASKING on the left side panel. When you select your
target in the TASKING Configuration Description menu, the template
projects you have set up will be used.

See “Template Projects” on page 2-5 for details about how Link for TASKING
uses template projects during the build process.

You may want to create a new configuration to use with new template projects.
See the next section for details.

Tutorial: Creating a New Configuration
You can customize the default Target Preference configurations by choosing
from the preconfigured options sets, or by creating new template projects.

However, it may be useful to create a new Target Preference configuration
if you want to switch between them in the TASKING Configuration
Description menu. For example, if your target is TriCore, you could set
up a new configuration called TriCore_user to specify hardware settings
for your target; then you can easily switch between TriCore (the default
instruction set simulator configuration) and TriCore_user using the
TASKING Configuration Description menu in your model’s Configuration
Parameters dialog.

In this tutorial, you create a new TASKING configuration and save it in the
TASKING target preferences. You can then use your new configuration in any
Simulink model that is configured with Link for TASKING by selecting it in
the TASKING Configuration Description menu.

To create a new configuration:

1 From the MATLAB Start menu select Simulink > Link for TASKING
> TASKING Target Preferences.

2 Select Create new Configuration and click OK.

3 Expand Configuration_Options.

4 Type Tutorial in the Configuration_Description field.

5-6



Tutorial: Creating New Template Projects

5 Fill in the rest of the fields for this configuration. See “Setting Target
Preferences” on page 1-7 to set these fields properly.

a You must specify the location of your toolset, by filling in the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.

b You can set up the template projects and CrossView initialization fields
automatically in one of two ways:

• You can use the Start menu option Select Preconfigured Target
Preference Settings. See “Tutorial: Using Option Sets” on page
5-2 for instructions.

• You can create new template projects for this configuration. See
“Tutorial: Creating New Template Projects” on page 5-4.

If you are going to use either of these options you can leave the template
projects and CrossView initialization fields blank, as they will be filled in
automatically when you follow the steps in using option sets or creating
new template projects.

Click OK to close and save your target preferences.

6 Once saved, you can use the new Tutorial configuration in any model that
is configured with Link for TASKING. For example, open any of the Link
for TASKING demo models (such as tasking_demo_fuelsys).

7 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog opens.

8 Select Link for TASKING on the left side panel. Click the TASKING
Configuration Description menu, and notice that the Tutorial
configuration now appears in the list.

5-7



5 Tutorials

Tutorial: Configuring an Existing Model for Link for
TASKING

In this tutorial, you configure an existing fixed-point model and build it with
Link for TASKING.

1 At the MATLAB command prompt, type rtwdemo_fixptdiv to open a
fixed-point demo model.

2 Switch the model to use Real-Time Workshop Embedded Coder. Select
Simulation > Configuration Parameters, and click Real-Time
Workshop.

3 Click Browse and select ert.tc (first item in the list). Click OK.

4 Add the Link for TASKING configuration set to the model as follows: Select
Tools > Link for TASKING > Add Link for TASKING Configuration
to Model.

5 Open the Configuration Parameters dialog again (from the Simulation
menu), and observe the Link for TASKING configuration set added to the
model. Select Link for TASKING from the left panel:

a Set the Build Action to Create and Build Application Project.

b Select the TASKING Configuration Description to match your target.

c Select the check box option to Specify Build Subdirectory Name, and
type <target>_int in the Build Subdirectory Name field. Replace
the string <target> with your real target, e.g., c166_int.

d Under the Real-Time Workshop options, select Interface and clear
the check box for floating-point numbers support under Software
environment, since this model is fixed point. This instructs Real-Time
Workshop to avoid building the floating-point version of the rtwlib
library.

e Under Real-Time Workshop, select Hardware Implementation,
and select your device type. See the demo models for examples. Some
devices use custom settings, others have preconfigured configurations,
for example:

• For C166 platforms, select Infineon C16x, XC16x.

5-8



Tutorial: Configuring an Existing Model for Link for TASKING

• For TriCore platforms, select Infineon TriCore.

• For ARM platforms, select ARM 7/8/9.

You are now ready to build the model. Press Ctrl+B or select
Tools > Real-Time Workshop > Build Model.

5-9



5 Tutorials

Tutorial: Build Actions
Models configured with Link for TASKING have a build action setting that
instructs Real-Time Workshop to perform different actions when the model
is built. The following example explains what you can do by setting the
build action.

Open any model configured with Link for TASKING (example, demo model
tasking_demo_fuelsys).

Select Simulation > Configuration Parameters, and click the Link
for TASKING configuration set. Under Build Configuration, the Build
Action list has six different settings:

5-10



Tutorial: Build Actions

• Create Application Project

Generates code for the model or subsystem, creates a TASKING application
project for the selected TASKING configuration, connects to the TASKING
EDE, and opens the application project (in addition to the required
Real-Time Workshop and DSP Library projects, if required) in the
TASKING EDE. This option does not build or execute the application.

An EDE_Obj object handle is exported to the MATLAB workspace (if this
option is selected). This object allows you to interact with the TASKING
EDE from MATLAB. For more information, see the section on using object
handles, Chapter 3, “Objects”.

Note To manually build the generated project in the TASKING EDE, right
click on the application project (starts with the same name as the model
name), and select Build.

• Create Library Project

Performs the same actions as Create Application Project, but this
option archives the generated code into a library in TASKING. No main.c
file is generated.

• Create and Build Application Project

Performs the same actions as Create Application Project, but also
instructs TASKING to build the application project.

Note To manually debug the executable from the application project, click
the Debug Application icon in the TASKING EDE.

• Create and Build Library Project

Performs the same actions as Create Library Project, but also instructs
TASKING to build the Library project.

• Create, Build and Execute Application Project

Performs the same actions as Create and Build Application Project
and also downloads the executable file to your CrossView Target and runs

5-11



5 Tutorials

the executable. No debugging information is downloaded into the target
with this option.

A CrossView Pro object handle is exported to the MATLAB workspace
(if this option is selected). This object allows you to interact with the
CrossView Pro debugger from MATLAB. For more information, see the
section on using object handles, Chapter 3, “Objects”.

• Create, Build and Debug Application Project

Performs the same actions as Create, Build and Execute Application
Project but also downloads debugging information to the target. This
option behaves the same way as the Debug Application icon in the
TASKING EDE.

5-12



Index

IndexL
Link for TASKING

build action 1-16
build process 2-1
classes 3-3
configuration options 1-24
creating objects 3-4
introduction 1-2

menu items 1-18
object methods 3-6
objects 3-1
option sets 1-22
PIL cosimulation 4-1
supported toolsets 1-4
target preferences 1-7
tutorials 5-1

Index-1


	toc
	Getting Started
	What Is Link for TASKING?
	Supported TASKING Toolsets
	Support for Other Versions

	Using This Guide
	Setting Target Preferences
	Target Preference Fields

	Working with Configuration Sets
	Setting Build Action

	Link for TASKING Menus
	Start Menu Items
	Tools Menu Items

	Option Sets
	Link for TASKING Configuration Options
	Known Limitations and Tips
	Build Process
	EDE is slow, unresponsive or crashes
	Signal Processing Blockset Library Build Failures
	Model Reference is not supported
	Real-Time Workshop “grt.tlc”-based targets are only supported fo
	Memory Block Freed Twice Error
	8051 EDE cannot compile files with long names
	8051 Compiler Bug: Assertion Failure
	8051 8-bit code generation problem for signals with large dimens
	ARM GRT Build Failure
	DSP563xx Toolset Support Limitations
	“Create, Build and Execute Application Project” Build Action fai

	Processor-in-the-Loop (PIL)
	TASKING TriCore 1766B PIL Limitation
	8051 link order bug can cause PIL application failure
	8051 PIL timeout errors
	Support for Buses / Mux Signals at boundary
	Signals with Custom Storage Classes are not supported at the PIL
	Continuous sample times not supported
	Real-Time Workshop “grt.tlc”-based targets are not supported for
	Enabled / Triggered subsystems are not supported
	Warnings caused by infinite sample times
	No support for TASKING feature “treat double as float”
	TASKING optimization settings may cause incorrect cosimulation r



	Build Process
	Build Process Overview
	Code Generation Process 
	Build Process
	Memory Placement Example

	Project-Based Build Process
	Target Project Space

	Template Projects
	Relocation of Template Projects
	How the Build Process Modifies the Relocated Template Project

	Shared Libraries
	Utility Function Generation: Shared Location
	Supporting Multiple Shared Utility Function Locations: Build Sub

	Build Process — Directory Structure
	Command Line Project Information


	Objects
	Objects for Link for TASKING
	Classes
	Using Objects
	Creating an Object
	Determining the Available Methods for a Class
	Obtaining Help for a Class Method
	Calling a Method
	Determining the Available Properties for a Class
	Accessing a Property
	Objects Demo Example

	List of Methods
	Methods for Class tasking.edeapi
	Methods for Class tasking.edeprojectspace
	Methods for Class tasking.edeproject
	Methods for Class tasking.xviewapi


	Processor-in-the-Loop (PIL) Cosimulation
	Overview of PIL Cosimulation
	Why Use Cosimulation?
	Definitions
	How Cosimulation Works

	Creating a PIL Block
	The PIL Cosimulation Block
	Building, Running, and Debugging PIL Applications
	Building and Downloading PIL Applications
	PIL Debugging
	Coverage and Profiling Reports


	Tutorials
	Tutorial: Using Option Sets
	Tutorial: Creating New Template Projects
	Tutorial: Creating a New Configuration

	Tutorial: Configuring an Existing Model for Link for TASKING
	Tutorial: Build Actions

	Index


